Hum Hered. 2011 Oct 11;72(2):133-141. [Epub ahead of print]
Rubicz R, Leach CT, Kraig E, Dhurandhar NV, Duggirala R, Blangero J, Yolken R, Göring HH.:
Source
Department of Genetics, Texas Biomedical Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, Tex., USA.
Abstract
Background/Aims: Antibodies against infectious pathogens provide information on past or present exposure to infectious agents. While host genetic factors are known to affect the immune response, the influence of genetic factors on antibody levels to common infectious agents is largely unknown. Here we test whether antibody levels for 13 common infections are significantly heritable. Methods: IgG antibodies to Chlamydophila pneumoniae, Helicobacter pylori, Toxoplasma gondii, adenovirus 36 (Ad36), hepatitis A virus, influenza A and B, cytomegalovirus, Epstein-Barr virus, herpes simplex virus (HSV)-1 and -2, human herpesvirus-6, and varicella zoster virus were determined for 1,227 Mexican Americans. Both quantitative and dichotomous (seropositive/seronegative) traits were analyzed. Influences of genetic and shared environmental factors were estimated using variance components pedigree analysis, and sharing of underlying genetic factors among traits was investigated using bivariate analyses.
Results: Serological phenotypes were significantly heritable for most pathogens (h(2) = 0.17-0.39), except for Ad36 and HSV-2. Shared environment was significant for several pathogens (c(2) = 0.10-0.32). The underlying genetic etiology appears to be largely different for most pathogens.
Conclusions: Our results demonstrate, for the first time for many of these pathogens, that individual genetic differences of the human host contribute substantially to antibody levels to many common infectious agents, providing impetus for the identification of underlying genetic variants, which may be of clinical importance.
No comments:
Post a Comment